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Measurements of air permeability of sandstones using a pycnometer,
novel experimental and theoretical approach

By Jan Malczyk

Addition of auxiliary hardware to a gas pycnometer forms a permeameter- pycnometer instrument which
allows for air permeability measurements  as well as density and porosity. Characterization of sandstone
samples  using the linear (Darcy)  model  and capillary flow model  (corrected  Poisseuille  equation)  is
presented. 

Gas flow rates through sandstones are substantially higher then liquids and generally much lower pressures
can be used for  gas permeability  measurements.  It  appears  that  the pressure  range used in typical  gas
(Helium) pycnometers is sufficient for such measurements and large range of permeability coefficients can
be obtained. Moreover, the typically used Hassler cells for high pressure applications can be replaced by
simple hardware which can be easily attached to a pycnometer sample chamber for rock core holding. The
pycnometer offers volume (density) measurements and if the geometrical volume can be determined, the
porosity of such core can be obtained. 

Three  samples  of  sandstones  cores  of  different permeability  coefficients  were  acquired  from Kocurek
Industries, Inc., Caldwell, Texas. The received samples were of perfect cylindrical shape with 1" diameter
and 2 " of length. Some of their listed properties are presented in the table 1 below.

Number Name Permeability
[mD]

Porosity
[%]

Permeability
by

Homogeneity

1 Bentheimer 1500 - 3500 23 - 26 KCl/N2 Yes
2 San Saba 70 - 85 19 - 21 N2 Yes
3 Colton 0.1 - 2 7 - 15 N2 Yes

Table 1. Literature data of the received samples

Using  the  specimens  as  received,  the  density  and  porosity  of  the  samples  were  measured  using  the
VersaPyc XR pycnometer and air was used as the carrier gas. The results are presented in the table below
and the extra significant figures in some columns were preserved for further calculations.

Number Name Mass
[g]

Volume by
pycnometer, Vp

[mL]

Density by
pycnometer

[g/mL]

Geometrical
volume, Vg

[mL]

Porosity
[%]

1 Bentheimer 50.6696 19.0286 1.968 25.741 26.077
2 San Saba 53.7726 20.0871 2.089 25.741 21.965
3 Colton 60.5655 22.4586 2.353 25.741 12.748

Table 2. Measured density and porosity of received samples

The porosity ε is a dimensionless quantity and is defined as the ratio of void volume Vv to geometrical
volume Vg. If multiplied by 100, it is expressed as % of Vv/Vg.  The void volume Vv is the difference
between the geometrical volume Vg and the volume Vp obtained by pycnometer.
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ε = 
Vv
Vg

 = 
Vg−Vp
Vg

     (Eq. 1)

Before carrying out the permeability measurements,  the core samples, except the top and bottom, were
uniformly covered with epoxy. High strength, aluminum filled, two-parts epoxy of high viscosity was used
to prevent deep migration into the pores of samples. Holding the sample by the ends horizontally in a rotary
machine,  the  thickness  of  epoxy  layer  and  its  uniformity  along  the  side  surface  of  the  cylinder  was
satisfactory to be used for O-rings mounting. 

A simple three-part holding system was developed to hold the sample and easily attach it to the pycnometer
sample chamber.  The bottom of the sample is exposed to either vacuum or pressure conditions inside the
sample chamber while the top can be exposed to either atmospheric pressure or high external pressure for
dealing with cores with very low permeability coefficients. 

Fig. 1. Vacuum mode setup

The simplified flow schematic presented above shows the vacuum mode setup for measuring flow rates
through rock cores. The top of the sample is exposed to atmospheric pressure and the bottom is kept under
various vacuum levels, which are indicated by the absolute pressure transducer PT. When the solenoid S1
is  opened and  the  vacuum pump activated,  the  metering  valve  adjustments  allows  for  setting various
vacuum levels in the pycnometer sample chamber. The metering valve was temporarily installed between
the S1 and the vacuum pump for the vacuum mode. After a steady state is established, the flow rate is
measured using the soap bubble flowmeter and digital stopwatch. In order to reduce vibrations from the
vacuum pump output, the specially designed muffler is added between the vacuum pump output and the
flowmeter. 

Fig. 2.  Pressure mode setup

The  pressure  mode  setup  is  envisioned  as  the  typical  hardware  arrangement  without  any  internal
customization of the pycnometer.  If the solenoid 2 is turned on, the precision pressure regulator embedded
inside the instrument can set various pressure levels inside the sample chamber of the pycnometer. The
pressure transducer, PT, measures the pressure values. The flow of air out of the sample is directed to the
bubble  flow  meter.  Technically  one  pressure  setpoint  is  sufficient  for  determining  the  permeability
coefficient, but for further discussion of the theory multiple pressures setpoints were used. 
The flow rates measurements  versus set  pressures  for  the San Saba sample were carried out using the
vacuum  and  pressure  mode  setups  described  above.  This  sample  was  selected  because  it  was  just
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convenient to obtain the whole range of pressures using the 344 kPa pressure range transducer and flow
rates values using only one bubble flowmeter of 50 mL volume range. The results are presented on the
graph below. 

Fig. 3. Permeability results for Darcy (blue) and capillary (red) flow models

The pressure values on the abscissa are the final pressure values measured by the pressure transducer at the
bottom of the sample while the top of the sample was kept at atmospheric pressure. The ordinate is the
quotient  of  flow rate [mL/s] and absolute value of  pressure differences [kPa] on opposite sides of the
sample.  The series of blue diamonds correspond to the so-called Darcy model calculations. 

The series of pink squares corresponds to the capillary flow model where the ordinate values are calculated
as the same flow rate multiplied by pressure P1 and divided by the absolute difference of the squares of
pressures P1 and P2. 

For non-compressible fluids, the simple relation of flow rate versus pressure differential is commonly used
for permeability calculations (linear Darcy model):

Q= k⋅A
μ⋅h

⋅(P1−P 2)           (Eq. 2)

where: 
Q  - flow rate [mL/s],
k - permeability coefficient [mD]
A - cross section of sample area [cm2]
μ - dynamic viscosity [cP] = [mPa*s]
h  - height (length) of the sample [cm]
P1 - P2 -  pressure differential across the sample [kPa]
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Somehow the same form of the equation 2 is often used for compressible fluids, namely gases. Using the
dynamic viscosity of air at 23 C as 0.0183 mPa*s, the sample diameter as 2.54 cm and its length of 5.08
cm, the permeability coefficient k can be written as 

k [mD] = 1859.01⋅ Q
P1−P2

          (Eq. 3)

As it can be seen from the above chart, the Q/(P1-P2) ratio for the Darcy model is not a constant but it rather
exhibits  a  linear  relationship  and the  Q/(P1-P2)  ratio  depends  on the  pressure  used.  The linear  profile
remains the same in the vacuum region and above atmospheric pressures. In the pressure range used for this
sample, from 16.75 to 242 kPa,  k [mD] varies from 32 to 86.  So, if the experimental conditions are not
specified and if the particular formula is not stated, comparison of literature k values (70-85)  is difficult. 

Using Poisseuille equation of flow through a capillary and corrected for compressible fluids (gases), and
assuming N such capillaries of having the same (representative, equivalent) radius R and height h,  the
relationship of flow and pressure can be written as:

Total Flow Q = N· Qc = 
N·π·R4

16 · μ · h
·
(P1

2−P2
2)

P2

            (Eq. 4)

where Qc is the flow through a single capillary, μ is the dynamic viscosity, P1 and P2 are  the pressures at
the sample input and output. An important consequence of this equation is that both pressure values, P1 and
P2 must be known, not just a difference between the two as in incompressible fluids case.  In most typical
experiments the P1 or P2 is just the atmospheric pressure (for convenience of experimental setup) and is
called the reference pressure. In general case, the reference pressure can be of any value, from vacuum to
much higher pressures then the atmospheric. 

In  general  it  is  more appropriate  to  consider  various  numbers  N i of  different  radii  Ri  and carry out  a
summation over the index i, but for simplicity reasons the same size of capillaries is being assumed. Since
the gas flows faster through the larger size capillaries and the exponent of four practically ensures that only
the largest sizes of capillaries need to be considered.

Combining the constants from equation 4 into an overall constant kc,  the equation can be rearranged as 

kc = 
N·π·R4

16 · μ · h
= Q⋅

P2

P1
2−P2

2                   (Eq. 5)

The series of red squares on the Fig. 3 have the ordinate values calculated using the right hand side of the
equation 5.  The kc values remain fairly constant versus the pressure range used.  It can be easily concluded
that the Eq. 4  is more appropriate for description of gas (air) permeability in  sandstones then  Eq. 2. The
slightly decreasing trend of kc values vs pressure can be related to a more complex relationship. 

The equation 4 can be re-written in a different form as 

Q = k c⋅(P1−P2)⋅
(P1+P2)
P2

            (Eq. 6)

From the mathematical point of view, the Eq. 6 can be considered as the Eq. 2 multiplied by the correction
factor  (P1+P2)/P2.  Perhaps  the  most  popular  is  the  so-called  Klinkenberg  correction  to  account  for
discrepancy  of  results  when  experimental  flow-pressure  results  for  gases  are  interpreted  using  Darcy
formula (Eq. 2). This is basically not needed if the capillary model (Eq. 4) is used for interpretation of such
experimental data.  The further explanation of using the “gas slippage” concept does not seem to be valid at
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all.  As shown on the Fig.  3 (the series  of blue diamonds),   the linear  dependence of  the Q/(P 1-P2)  vs
pressure is the same in the vacuum region and in the pressurized region. The overall problem just seems to
be arising from using the wrong equation for gas permeability calculations. 

The interpretation of the straight line fitted through the series of data points for the Darcy model can yield
interesting  results.  Extrapolation  to  the  zero  pressure  yields  the  minimum  k  value,  which  roughly
corresponds to the kc value for the capillary model.  Assuming P1 = 0, and comparing  Eq. 2 to Eq. 4 (or Eq.
6),  the expression evaluates just to comparing the constants. 

kmin⋅A
μ⋅h

=  
N·π·R4

16 · μ · h
          (Eq. 7)

The cross-sectional area of all capillaries can be written as N·π·R2
 and it can be interpreted as the area of

voids Sv in the base of a cylindrical sample. From the definition of porosity and assuming uniformity of
voids throughout the sample, it can be stated that the ratio of voids on the surface, Sv, to the geometrical
surface area, A,  is the same as volume of voids, Vv,  to the geometrical volume Vg.

Sv
A

 = 
Vv
Vg

 =   ε     (Eq. 8)

So it can be written that  

N·π·R2
  = A⋅ε       (Eq. 9)

 Substituting the  N·π·R2
 by A·ε in Eq. 7 and after simplification, the constant k can be expressed as 

kmin =  
R2

16
⋅ε          (Eq. 10)

Since the kmin can be obtained from calculations of flow-pressure data and other parameters, and the
porosity ϵ can be obtained using a pycnometer, the radius R of a representative (imaginary) capillary can be
easily evaluated. 

R = 4⋅√ kminϵ        (Eq. 11)

Similar relationship between R and k can be found in literature but since derivations were based on the
Darcy (linear) model and presumably for non-compressible fluids, the numerical factor is different. After
calculations of the  kmin =  0.2785·10-9 [cm2] and using the porosity value ϵ = 0.21965, the calculated
value of R is equal to 1.424·10-4 [cm] = 1.424 [μm]. 

Once the capillary radius R is calculated, the number N of such capillaries can be estimated using for
example Eq. 9. The estimate of the N value yields 17463217 or 1.7463217·107.  Now, having the number
of the imaginary capillaries and their radius R, it is possible to calculate the total surface area of them and
therefore, use this number as an estimate of the surface area of the sample Sa. 

Sa= 2⋅π⋅R⋅h⋅N         (Eq. 12)

The Sa value amounts to 79391 cm2 for the whole sample. Dividing this value by the mass of the sample,
the specific surface area per gram is equal to 1476 [cm2/g].  Such value should be considered as a lower end
estimate as obviously a much more complex geometry of passages does exist in any such samples and
smaller size passages can contribute to a greater extent to the overall specific surface area. 

The outlined above procedure for some characterization of a rock core sample requires several different
pressures  and  corresponding  flow data  to  obtain  the  useful  parameters.  It  might  not  be  so  simple  to
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accomplish that for various samples using a single flowmeter or specific pycnometer due several orders of
magnitude of the permeability coefficients. For example, the sample named Bentheimer requires large flow
rates to cover reasonable pressure range and the vacuum range is very limited due to low capacity of the
vacuum pump used.   Samples  of  rather  low permeability  like  the  Colton  one,  requires  much  higher
pressures  to  be  used  then  the  typical  range  used  in  any  gas  (helium) pycnometer  and  for  flow rates
measurements,  the  bubble  flowmeters  of  1  and  1  mL range  are  needed.   To  overcome  the  technical
difficulties,  it  is  better  to  use  the  capillary  flow model  instead  of  the  linear  (Darcy)  model.  A single
measurement of flow vs pressure is sufficient as the kc constant is fairly the same and it is close to the kmin

value. 

In some previous applications notes, the Eq. 4 was proposed for evaluation of cement fineness (specific
surface area) instead of other simplified approaches. The packed bed of cement (or any fine porous powder)
can be considered similar to a core rock, except that the packed bed must have a container for preserving its
shape while the rock core sample holds its shape without any container. 

In the application note entitled “Absolute method for determination of specific surface area using gas (air)
permeability technique”, the following equation was proposed for evaluation of cement fineness: 

Sa=
Ab

2 ·mb
·√ ϵ3 ·V b ·(P

2−Po
2)

μ·Po ·Q
 (Eq. 13)

Sa – specific surface area [cm2/g]
Ab –geometrical surface area of the powder bed [cm2]

mb – mass of the powder used for bed formation [g]
ϵ – bed porosity [dimensionless]
Vb – geometrical volume of the powder bed [cm3]
P – pressure at the top of the powder bed [kPa]
Po – Pressure at the bottom of the powder bed [kPa]
μ – dynamic viscosity [Pa·s]
Q – flow rate [mL/min]

Using the flow-pressure data and porosity obtained from pycnometric measurements, the equation 13 was
tentatively applied to the sandstone samples. The following table present results of the calculations.

Number Name Avg kc

[mL/(s·kPa)]
Sa 

[cm2/g]
R 

[cm]
N

1 Bentheimer 7.154·10-1 290 9.136·10-4 5.039·105

2 San Saba 1.423·10-2 1545 1.360·10-4 1.914·107

3 Colton 1.188·10-4 17767 1.214·10-5 2.465·109

Table 3. Characterization parameters using the absolute method for specific surface area measurements

In summary, using a very simplistic theoretical approach and simple instrumentation, the parameters, like
density,  porosity,  permeability  coefficients,  minimum  specific  surface  area,  representative  radius  of
capillary,  and  a  number  of  such  capillaries  can  be  obtained.  Such  parameters  can  be  useful  in
characterization of similar classes of materials like sandstones. 

6

9091 SW 21st Street, “A”, Boca Raton, FL, USA · Ph: (561) 271-1958 
Websites: www.thermopycnometer.com, www.instruquest.com · E-mail: info@instruquest.com


